镍基高温合金具有优良的高温强度和氧化腐蚀抗力,是制造航空发动机和燃气轮机等高温高压部件的关键结构材料,也是核电、深海等领域广泛应用的结构材料。在这些苛刻的工况下服役时,晶界被视为镍基高温合金的“阿喀琉斯之踵”,沿晶界断裂是多晶镍基高温合金失效的最主要原因之一。
镍基高温合金由于低的层错能,合金中高达50%的晶界是退火过程中形成的孪晶界。相对于普通晶界,共格孪晶界具有较低的界面能和较高的裂纹萌生扩展抗力,因此一般认为在工程合金中引入更多的孪晶界可以显著提升合金的服役寿命,然而近年来一些研究发现,多晶镍基高温合金中孪晶界更易于诱发裂纹萌生和扩展(Nat.Commun. 6:6164, 2015; Acta Mater. 103,461-473, 2016)。由于镍基高温合金成分和组织的复杂性,孪晶界的负面效应的内在机制尚不明确,导致很难通过调控合金的组织成分来降低或避免孪晶界的负面效应,制约了合金在安全系数要求极高的航空等领域的应用。
近日,上海科技大学智造系统工程中心张振波课题组近期与国际合作者通过多尺度结构和力学表征并结合第一性原理计算,首次从原子尺度揭示了该反常现象的物理机制,对于调控多晶镍基高温合金的性能具有重要意义。相关成果以题为”Strain localisation and failure at twin-boundary complexions in nickel-based superalloys”发表于国际著名期刊NatureCommunications。